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Abstract

WebRTC is an API definition by theWorldWideWeb Consortium (W3C) which obtained a high
popularity among browser-to-browser applications. One of the core reasons for that popular-
ity is the simplicity it provides to set up a peer-to-peer connection. Although it is often mainly
used for audio and video communication, there is also a Data Channel that allows arbitrary
bidirectional data transfers between two peers. Datagram Transport Layer Security (DTLS),
which is based on Transport Layer Security (TLS), is being used as WebRTC’s security layer.

In the recent past, plenty of vulnerabilities in TLS have been revealed and it is reasonable to as-
sume that there aremore to come. In addition,WebRTC API users have no control over the key
pair generation, nor how the public keys are being exchanged between the peers. However,
even more problematic is that WebRTC requires an implementation of a Signalling Channel to
exchangemetadata that is required to set up a peer-to-peer connection. Thismetadata already
contains security-relevant information that no third party should be able to read or modify,
unless it is absolutely necessary for the use case.

This work presents a solution that uses the Networking and Cryptography library (NaCl) to
provide another security layer forWebRTC Data Channels and a secure implementation of the
Signalling Channel. The developed software collection is called SaltyRTC and will be released
on GitHub soon.
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Glossary

Application Programming Interface (API)

Defines inputs, outputs and underlying types. The interface is independent of the implemen-
tation.

Data Channel

Channel for arbitrary data transfer in WebRTC.

Diffie-Hellman Key Exchange

A method of securely exchanging cryptographic keys over a public channel.

Datagram Transport Layer Security (DTLS)

A collection of cryptographic protocols for datagram protocols. Based on TLS.

JavaScript Object Notation (JSON)

An open format that uses human-readable text to encode data objects consisting of key-value
pairs.

Long Polling

A technique for HTTP requests where the response is held back until data is available.

Message Authentication Code (MAC)

A short piece of information used to provide integrity and authenticity assurances for a mes-
sage.

Networking and Cryptography Library (NaCl, pronounced salt)

A software library for network communication, encryption, decryption, signatures and vari-
ous utility functions.

Nonce

An arbitrary number that may only be used once.

Peer-to-Peer Connection

A direct connection between two communication partners (peers).

Forward Secrecy

A property of protocols which ensures that a temporary session key is being established over
a set of long-term keys.
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RSA

An asymmetric cryptosystem based on the factoring problem, designed by Ron Rivest, Adi
Shamir and Leonard Adleman.

Real-time Transport Protocol (RTP)

A protocol for efficient audio and video transmission in real-time.

Signalling Channel

A channel for exchanging the session description and network reachability of a peer.

Secure Real-time Transport Protocol (SRTP)

An AES encrypted profile for the Real-time Transport Protocol.

Session Traversal Utilities for NAT (STUN)

A network protocol to allow an end host to discover its public IP address if it is located behind
a NAT.

Traversal Using Relays around NAT (TURN)

A protocol that assists in traversal of network address translators (NAT) or firewalls. TURN
servers are able to relay arbitrary data in case of a strict NAT.

Transport Layer Security (TLS)

A collection of cryptographic protocols designed to provide communications security over a
computer network.

Uniform Resource Identifier (URI)

A string of characters used to identify the name of a resource.

World Wide Web Consortium (W3C)

The main international standards organisation for the World Wide Web.

Web Real-Time Communication (WebRTC)

An API definition of theW3C that primarily supports browser-to-browser applications for me-
dia and file sharing.

WebSocket

A protocol providing full-duplex communication channels over a single TCP connection.

XMLHttpRequest

AnAPI interface in the browser to sendHTTP requests to aweb server and retrieve the server’s
response.
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1 Introduction

1.1 Motivation

In the last decade, the number of devices per person have increased dramatically. These de-
vices all gather and store data that users want to access on all of their devices. Consequently,
plenty of applications exist that require a secure data communication layer between two end-
points. Although it is not required, most of the time the data is relayed over a server. But
for confidential data, the shortest route from one endpoint to another is preferable. Thus, re-
laying should be avoided. The main reason behind this common practice is the possibility to
store data on an always-online server, so devices that synchronise their data do not have to be
online at the same time.

But another reason is Network Address Translation (NAT) which prevents most incoming con-
nections that have not been established from within the network (e.g. behind the NAT). There
are various methods to mitigate this problem. But on their own they never achieved a solu-
tion to all problems that NAT exposes. Interactive Connectivity Establishment (ICE) [1] is a
technique that combines these various methods to overcome the described problems. How-
ever, due to ICE’s complexity, it has not been used in many protocols, yet.

WebRTC is an API definition still in development by the World Wide Web Consortium (W3C)
which allows the browser to establish a peer-to-peer connection, by the help of ICE,without the
need for a browser plugin. Furthermore, audio, video and arbitrary data can be exchanged
easily over this peer-to-peer connection and WebRTC does all the hard work for us. Although
WebRTC is especially designed for the use in a browser, it is also possible to write Android and
iOS applications that use WebRTC.

Whatwas very difficult in the past is now achievable for every application developer. WebRTC
opens the doors for peer-to-peer applications over the shortest route that can be used on all
major operating systems and devices.

This bachelor thesis will explore the technologies that are required and highlight potential
security issues of WebRTC. We have developed a software collection, called SaltyRTC, which
simplifies the usage and tries to overcome the security issues ofWebRTC by using the Network-
ing and Cryptography library (NaCl).

1.2 Structure

Before we can set up a WebRTC-based peer-to-peer connection, session information has to be
exchanged. SaltyRTC exchanges these information by using WebSocket, therefore we will go
through the basics of WebSocket followed by the basics of WebRTC. Because SaltyRTC uses
NaCl, we will take a short look at NaCl as well. Afterwards, the software collection SaltyRTC
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2 BACKGROUND

will be introduced. In this part, the protocol design of SaltyRTC’s signalling mechanismwill be
explained followed by the data channel protocol.

2 Background

2.1 WebSocket

In this section, we will go through the most important features and properties of WebSocket
that are required to understand the design choices for the signalling channel implementation
of SaltyRTC.

2.1.1 Introduction

WebSocket is a protocol standardised by the IETF as RFC 6455 [2] in 2011 which enables bidi-
rectional communication from a client to a remote host. The corresponding WebSocket API
has been drafted by theW3C [3] as part of the HTML5 specification. The core reason for devel-
opingWebSocket was to provide a protocol that natively supports bidirectional data transfers
in the browserwhile not relying onmultipleXMLHttpRequests or long polling. WebSocket uses
a single TCP connection for traffic in both directions. This circumvents a variety of problems
that existed formerly with HTTP polling, e.g. the usage of a TCP connection for each incom-
ing message or the overhead of the HTTP header for each message. Similar to HTTPS (HTTP
over TLS), TLS (Transport Layer Security) can be used to encrypt the communication on the
WebSocket.

2.1.2 Handshake

The handshake of WebSocket is rather unusual because the HTTP protocol is being used at
the beginning. Afterwards, the protocol is switched over to the binary protocol of WebSocket.
However, this ensures that the ports 80 and 443 can be used which are sometimes the only
open destination ports for clients.

To establish a WebSocket connection, the client sends a HTTP GET request to the server along
with a Path, the Connection header set to the value Upgrade and various other custom Web-
Socket headers. These are used for negotiation purposes and include information such as the
client version or the supported subprotocols. The header Sec-WebSocket-Key contains a gener-
ated key which acts as a challenge to the server.

2
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GET /0187700f92be19782443836d8b21c564b4988bc6b075ee03fabb6a21453b517d HTTP/1.1

Host: zwuenf.net:8765

Connection: Upgrade

Upgrade: websocket

Origin: http://zwuenf.net

Sec-WebSocket-Version: 13

Sec-WebSocket-Key: Ej4YgAECgmZjG4xWdxIV8w==

Sec-WebSocket-Extensions: permessage-deflate; client_max_window_bits

...

The server sends a HTTP response back to the client. In case the server accepts the connection
requests, he will respond with status code 101 Switching Protocols and the header Upgrade set
towebsocket. Again, customWebSocket headers may be sent in the response. If the client sent
information about which subprotocols he understands, the server must select one of these
subprotocols or reject the connection request. In the header Sec-WebSocket-Accept the server
proves that he supports the requested protocol version. The challenge of the client is concate-
nated with a unique GUID defined in the WebSocket standard and hashed afterwards. This
mechanism prevents proxies from blindly accepting WebSocket upgrade requests when they
do not understand the protocol.

HTTP/1.1 101 Switching Protocols

Server: Python/3.4 websockets/2.4

Upgrade: WebSocket

Connection: Upgrade

Sec-WebSocket-Accept: 971+drIT4NV5JEzepMIeULd/46k=

2.1.3 Path

The path value is a simple string that is specified in the client’s WebSocket request. Although
the purpose of the path is not specified, the server could use the path to distinguish clients and
let those clients that use the same path communicate with each other.

2.1.4 Payload Types

The WebSocket protocol allows to send text (UTF-8 encoded) and binary data. In the browser,
the API automatically converts the message to the correct type, e.g. a DOMString object or a
Blob object. Instead of the Blob object type, the developer may request that binary should
be converted into ArrayBuffer objects. On the one hand, ArrayBuffer object allows modifying
and slicing the data into smaller chunks. On the other hand, the Blob object is immutable but
provides better performance.

3
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2.1.5 Keep-Alive

To do connection liveness checks on an established WebSocket connection, client and server
may send the a ping message to the other peer. This message contains a payload that the
receiver has to repeat. The receiver of the ping then has to answer with a pong message.

The API in the browser does not provide any control over this mechanism. Therefore, it is not
possible to manually send ping messages to the server. Other implementations that can be
used outside the browser usually have an API that allows sending these messages manually.

2.2 WebRTC

WebRTC is an API definition drafted by the W3C [4] that allows real-time communication be-
tween browser and mobile applications. The underlying protocols used are standardised by
the IETF. Modern browsers support this technology natively without the requirement of a plu-
gin. It can be used to exchange audio, video and arbitrary data directly from peer to peer
without usage of an external server. All data is being encrypted by either SRTP (for real-time
data) or DTLS (arbitrary data over SCTP). In addition, all required audio and video engines
with all their complexities are integrated into WebRTC, so no external software needs to be
installed. API abstractions unify these engines and make sure that they can be used easily.

The peer connection between two peers is being established on multiple routes and the best
(short and stable) route is being used for communication. The route may change on demand
in case the currently used one is becoming unstable or a better route has been found. We-
bRTC is a technology, not a solution. Thus, exchanging session information and implementing
authentication is up to the developer.

To understand the design choices that have beenmade for SaltyRTC, we first have to go through
some of the core elements of WebRTC. Nevertheless, it is important to keep in mind that We-
bRTC is still in development and all characteristics described here are subjects to change.

2.2.1 Architecture

In the following, we will describe the various sections shown in figure 1.

2.2.1.1 Web API TheWeb API is an API to be used by web developers. This is the most ab-
stract interface WebRTC offers and the only interface that can be accessed in the browser. Be-
cause the API is currently still in development, browsers that support WebRTC have different
vendor specific names for functions, etc. However, there is an API adapter script maintained
by Google that unifies the differences between browsers. [6]
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Figure 1: WebRTC Architecture [5]
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WebRTC is in development since 2011. Currently, recent versions of Chrome, Opera, Bowser
and Firefox support the most vital features of WebRTC. Edge lacks support for Data Channels
while the Internet Explorer and Safari do not support WebRTC, at all. Despite that, there are
third party plugins which add WebRTC support to Safari and Internet Explorer. [7]

2.2.1.2 WebRTC Native C++ API The WebRTC Native C++ API is an API layer for browser
developers, so they can implement the API definition of the W3C. It is also being used by the
less known Android and iOS libraries which basically wrap Java/Objective C around the C++
API.

2.2.1.3 Session Management This is an abstract session layer which leaves the protocol
implementation to the application developer. It provides access to various management func-
tionalities which are required to set up a WebRTC session.

2.2.1.4 Voice Engine The voice engine unifies various audio codecs and algorithms to han-
dle and potentially counteract network jitter and high latency while maintaining a high voice
quality. It also tries to filter out the acoustic echo from the speaker into the active microphone
and several types of background noise.

2.2.1.5 Video Engine The video engine includes the video codecs and, much the same as
with the audio engine, provides algorithms to conceal the effects of network jitter and packet
loss on video quality. Additionally, it includes image enhancementswhich removes videonoise
from captured images.

2.2.1.6 Transport To establish a connection between two peers, the section Transport in
figure 1 includes the protocols ICE, STUN and TURN. These are vital components to establish
a direct communication channel between two peers and will be described in the Signalling
chapter. Moreover, multiplexing and the RTP (Real Time Protocol) network stack are being
handled in the Transport section.

2.2.2 Protocol Stack

Understanding how WebRTC establishes a peer connection and how the protocols are being
intertwined are the core components that need to be comprehended. Therefore, we will go
through and explain all important protocols and techniques used, including an evaluation of
their security mechanisms where meaningful.

The protocols shown in figure 2 will be explained from bottom to top. The Network (IP) layer
will be skipped.
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Figure 2: WebRTC Protocol Stack

2.2.2.1 UDP The User Datagram Protocol (UDP) [8] is a transport layer protocol on top of
the IP layer and one of the core members of the IP suite. UDP follows a connectionless model
and is unreliable. Accordingly, there is no guarantee of delivery, order or protection against
duplicate packets. In case of WebRTC, UDP is preferable over other transport layer protocols
for several reasons:

1. Traversing most NATs is possible with UDP by a technique called UDP Hole Punching
which is being used by the ICE protocol.

2. On the one hand, UDP is neither reliable nor does it ensure that packets being received
are in order. On the other hand, it guarantees a low latency which is desirable for real-
time audio and video communicationwhere small errors do notmattermuch but a high
latency due to packet retransmission is intolerable.

3. All common consumer level routers handle UDP packets. This is not the case for less
common protocols like SCTP.

2.2.2.2 STUN The Session Traversal Utilities for NAT (STUN) [9] is a protocol that allows an
end host to discover its public IP address in case it is located behind a NAT. It is designed to
be used as a tool by other protocols such as ICE. STUN requires at least one external server to
discover a peer’s public IP address and can usemultiple protocols, including UDP, TCP and TLS
over TCP.

2.2.2.3 TURN Traversal Using Relays around NAT (TURN) [10] is a relay extension to STUN.
Some types of NATmake it impossible to establish a direct communication between two peers.
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In this case, the affected peer needs an intermediate nodewhich acts as a communication relay.
The TURN specification defines a protocol that allows the peer to control the relay operation
and to exchange arbitrary data over the relay node. Communication with multiple peers is
possible using a single relay address. TURN can be used over either TCP or UDP.

For IPv6 support, a TURNExtension for IPv6 [11] has been definedwhich includes IPv4-to-IPv6,
IPv6-to-IPv6 and IPv6-to-IPv4 relaying.

2.2.2.4 SDP The Session Description Protocol (SDP) [12] is intended for describing multime-
dia communication sessions. Its main purpose is to announce and invite to a media commu-
nication session and negotiate its parameters. The various parameters may be media types,
formats, etc. In case of the offer/answer model [13], it is also being used for exchanging net-
work reachability information.

2.2.2.5 ICE The Interactive Connectivity Establishment (ICE) [1] is a protocol for NAT traver-
sal. ICE utilises STUN and its extension TURN to establish a peer-to-peer connection using the
offer/answer model [13] which is based on the Session Description Protocol (SDP). It can be
used by any protocol that supports the mentioned model. Moreover, it supports address selec-
tion for multi-homed and dual-stack hosts because ICE exchanges multiple IP addresses and
ports.

Both peers supply several IP addresses and ports in SDP offers and answers. Offers and an-
swers need to be exchanged via a signalling protocol which is not specified. The IP addresses
and ports are tested for connectivity by STUN. TURN is being used in case a direct connection
is not achievable.

2.2.2.6 DTLS The Datagram Transport Layer Security (DTLS) protocol [14] is a derivation
of the TLS protocol which provides the same security services for unreliable protocols such as
UDP. A minimal amount of changes has been made to TLS to support unreliable protocols.

Because the Secure Real-time Transport Protocol has no defined mechanism to exchange AES
keys, the Datagram Transport Layer Security Extension DTLS-SRTP [15] makes use of the DTLS
handshake to establish keying material, algorithms and parameters for SRTP.

2.2.2.7 RTP The Real-time Transport Protocol (RTP) is a protocol for efficient audio and
video transmission in real-time. RTP is accompanied by the RTP Control Protocol (RTCP).

2.2.2.8 RTCP The RTP Control Protocol (RTCP) [16]monitors and controls themedia streams
that RTP transmits.

8
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2.2.2.9 SRTP The Secure Real-time Transport Protocol (SRTP) [17] is an AES encrypted pro-
file for RTP which provides confidentiality, message authentication and replay protection to
RTP streams. It is designed to have a low overhead and a small footprint which makes it suit-
able for transmitting encrypted audio and video data in real-time. However, SRTP does not
define a mechanism on how to exchange the AES keys from one peer to another.

2.2.2.10 SRTCP The Secure RTCP (SRTCP) [17] protocol is a sister protocol of SRTP which
provides the same security features as SRTP to the unencrypted RTCP protocol.

2.2.2.11 SCTP The Stream Control Transmission Protocol (SCTP) [18] is a transport-layer
protocol which is connectionless and message-oriented like UDP but can be reliable like TCP.
Unlike UDP, it provides a flow and congestion control. SCTP can be configured to require
packet ordering or support unordered messages. Moreover, it supports multi-homing and
multiple unidirectional data streams. Because of its flexibility, SCTP is an ideal candidate for
WebRTC whose Data Channel API allows to configure the underlying SCTP stack for reliability
and ordered packets or unreliable and unordered data transmission. Additionally, the avail-
ability of multiplexing makes it possible to have multiple independent data channels which is
a requirement of the WebRTC Data Channel API.

The reason why SCTP was an obvious choice over UDP or TCP can be seen in table 1.

TCP UDP SCTP

Reliability reliable unreliable configurable

Delivery ordered unordered configurable

Transmission byte-oriented message-oriented message-oriented

Flow control yes no yes

Congestion control yes no yes

Table 1: Comparison of Transport Layer Protocols [19, chap. 18
table–18–1]

SCTP is the most configurable protocol and provides both flow and congestion control.

2.2.2.12 Interplay of the Protocols UDP is the main transport protocol used for all com-
munication of WebRTC. ICE, by utilising STUN and TURN, has the task to set up a peer-to-peer
connection. The necessary information to set up this peer-to-peer connection are being de-
scribed using the offer/answer model with SDP and transferred on the signalling channel.
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DTLS, with the DTLS-SRTP extension, is being used for both SRTP key establishment and as an
encryption layer for SCTP packets. After the keying procedure, the DTLS session is no longer
required for data transferred over SRTP until re-keying is necessary. However, this does not
concern the tunnelled SCTP packets which still require DTLS.

SRTP, SRTCP and SCTP are the application protocols. Audio and video data is transferred with
SRTP while arbitrary data is being transferred via data channels over SCTP. Usually, SRTP
and SRTCP have separate ports which would be difficult for peers behind NATs. Therefore,
WebRTC uses a multiplexing extension to allow multiple streams and their control channels
on the same destination port.

2.2.3 RTCPeerConnection Object

The RTCPeerConnection object is the API entry point for all WebRTC communication. Creating
a RTCPeerConnection object requires the configuration of STUN or TURN server Uniform Re-
source Identifiers (URIs). Additionally, constraints for media and various other options can
be supplied. An RSA key pair will be automatically generated for each RTCPeerConnection
instance.

To establish a peer-to-peer connection, first of all, an offer SDP message has to be created. The
offer message contains, among other things, types of media to be exchanged, the key finger-
print of the generated RSA key pair and an ICE password. This offermessage needs to be sent
to the other peer over a so called Signalling Channel.

When the other peer receives the offer message, an answer SDP message needs to be created
from the information of the offermessage. This answermessage will then be sent back to the
other peer over the Signalling Channel.

Meanwhile, both peers’ ICE Agents gather so called ICE candidates, which contain network
reachability information of a peer. Acquiring the network reachability information requires
a STUN or TURN server. However, there are plenty of publicly accessible STUN and TURN
servers with no authentication requirement. Again, these candidates are being exchanged
over the Signalling Channel. The gathering process happens in the background because query-
ing the external IP addresses may take a bit of time. Each available candidate triggers an
event. Therefore, ICE candidates, that can be retrieved quickly, can be sent to the other peer
which may speed up initiating the peer connection. This technique is called Trickle ICE and is
currently proposed as an extension to the ICE protocol. [20]

As soon as the ICE agent has received sufficient ICE candidates, all requirements for a peer-to-
peer connection are satisfied and the peer-to-peer connection will be initiated, in some cases
with the help of a relay server. If no sufficient ICE candidates have been found, the peer con-
nection fails and the whole process needs to be restarted from the beginning.
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Now, depending on the configuration, media streams and Data Channels can be created and
added to the peer connection. The other peer receives these objects by incoming events. Mul-
tiple peer connections can coexist and can be used at the same time to allow telephone confer-
ences, etc.

The various paths, on which data may be transmitted, can be seen in figure 3.

Figure 3: WebRTC Data Paths

2.2.4 ICE Agent

An ICE agent is responsible for gathering and managing ICE Candidates (which are IP, port
tuples). These candidates are being queried from STUN or TURN servers and contain network
reachability information. The agent prioritises ICE candidates, sets up and monitors connec-
tions between the peers and keeps the connection alive. Keep-alive messages are especially
vital for UDP connections that have been established by UDP Hole Punching. At any time, the
agent may decide to try other or even re-gather ICE Candidates in case the current connection
becomes unstable or does not fit the current requirements for throughput or latency.

2.2.5 Signalling Channel

As mentioned before, setting up a WebRTC peer-to-peer session requires an implementation
of the Signalling Channel in order to exchange offer/answer and network reachability informa-
tion. Apart from the requirement that both peers can create and exchange offer and answer
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SDP messages, there is no further constraint or specification on how to exchange this infor-
mation. Consequently, ensuring confidentiality, integrity and authentication of this channel
is up to the developer.

Having said this, the actual techniques for a signalling channel implementation, which works
in the browser, are limited. Basically, it boils down to three different techniques:

1. XMLHttpRequest: Unidirectional protocol. Sending and receiving messages as part of
an HTTP request or response.

2. WebSocket: Bidirectional communication protocol that uses an HTTP friendly hand-
shake.

3. Third party plugins that allow access to other protocols or even sockets.

The simplest implementation of such a channel would require that both peers connect to a
server. Messages that need to be exchanged on the signalling channel will simply be relayed
by the server from one peer to another. A visual representation of the communication can be
seen in figure 4:

Figure 4: Simple Relay Signalling Channel

1. Send an offer to the signalling server.
2. Forward the offer to the other peer.
3. Send an answer to the signalling server.
4. Forward the answer back to the peer who sent the offer.

The same procedure would take place for exchanging ICE candidates until the gathering is
complete. However, the channel should remain open in case the ICE agent decides to re-gather
candidates. An alternative approach would be to switch signalling communication over to a
data channel as soon as the peer connection is established.

There are countless of options for signalling channel implementations. For example, tele-
phone providers could implement a gateway which translates Session Initiation Protocol of-
fers to WebRTC offers and vice versa.
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2.2.6 Data Channel

Once the peer connection is established, the peers can create multiple data channels to ex-
change arbitrary data. Every data channel has its own identifier and can be configured with
custom delivery and reliability semantics. Because all data channels are multiplexed over the
same SCTP association, head-of-line blocking can be avoided between the different streams
and simultaneous delivery is guaranteed.

Data channels can be configured to be ordered or unordered and reliable or unreliable. These
attributes can be combined freely and supply a flexibility UDP and TCP cannot provide. Fur-
thermore, for unreliable channels, either the maximum packet life time or the maximum
amount of retransmits can be specified. The result is a partially reliable delivery channel with
either retransmit or timeout. All in all, there are six different configurations that are shown
in table 2.

Configuration Ordered Reliable

Ordered & Reliable yes yes

Unordered & Reliable no yes

Ordered & Partially Reliable with Retransmission Counter yes partial

Unordered & Partially Reliable with Retransmission Counter no partial

Ordered & Partially Reliable with Timeout yes partial

Unordered & Partially Reliable with Timeout no partial

Table 2: Possible Data Channel Configurations [19, chap. 18
table–18–3]

The first configuration,Ordered&Reliable, is equivalent to TCP. Although the equivalent toUDP
is not so obvious, it can be found in the fourth configuration, Unordered & Partially Reliable
with Retransmission Counter, with the maximum amount of retransmits set to zero.

2.3 NaCl

SaltyRTC uses the so called boxmodel of the Networking and Cryptography Library (NaCl) [21]
to encrypt and authenticate messages. NaCl (pronounced salt) has been designed to be easy-
to-use and to provide high-speed and high-security. Its fundamental operation is the public-
key authenticated encryption which ensures confidentiality, integrity and authentication of a
message between sender and receiver.
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2.3.1 Box

Other cryptographic libraries that provide public-key authenticated encryption typically re-
quire several steps to prepare an encrypted and authenticated message. The box model of
NaCl expresses a high-level functionality that does everything in one step. It converts a series
of bytes into a boxed packet that is protected against espionage and unnoticeable modification.

2.3.2 Public-Key Authenticated Encryption

The used cryptographic tools are a combination of the Curve25519 Elliptic Curve Diffie-
Hellman function, the Salsa20 stream cipher, and the Poly1305 message-authentication code
as can be seen in figure 5.

2.3.2.1 Example Let us assume thatA andBwant to exchange encrypted and authenticated
messages. They both have generated a key pair consisting of a public and a private key. In
addition, they have already exchanged their public keys over an authenticated channel. We
will now go through the procedure that is required forA to encrypt and authenticate amessage
(plaintext) that can be decrypted by B:

Figure 5: NaCl Public-Key Authenticated Encryption Example

1. A applies Curve25519 Elliptic Curve Diffie-Hellmann (ECDH) on A’s private and on
B’s public key. Due to the characteristics of the elliptic curve, hashing the result with
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HSalsa20 results in a 32 byte shared secret that is equal even if the keys are swapped
(B’s private and A’s public key).

2. A generates a random or predefined 24 byte nonce. The vital part is that this nonce is
only used once for the shared secret.

3. A uses the XSalsa20 stream cipher alongwith the shared secret and the nonce to encrypt
the plaintext.

4. A applies Poly1305 on the encrypted plaintext (ciphertext) to compute a Message Au-
thentication Code (MAC) which will be prepended to the ciphertext.

5. The MAC, the ciphertext and the nonce together form the so called box which can then
be sent to B.

B can decrypt the ciphertext and verify its authenticity by reversing the steps above.

2.3.2.2 Nonces When using NaCl, it is vital to understand the role of the 24 byte nonce. The
nonce is part of the Box and represents a unique message number that must never be reused
for other packets that are encrypted by the same shared secret. Although a random 24 byte
sequence can be used, this would open up the possibilities for replay attacks. Therefore, it
is recommended to use sequence numbers along with random bytes or a timestamp-based
number. To avoid replay attacks, the chosen nonce structure must also be validated by the
receiver.

2.3.3 Secret-Key Authenticated Encryption

In comparison to public-key authenticated encryption, secret-key authenticated encryption
does not require the derivation of the shared secret and the Curve25519 Elliptic Curve Diffie-
Hellman function will be omitted. Instead, the shared secret needs to be exchanged before-
hand. Other than that, the actual encryption mechanism does not differ to public-key au-
thenticated encryption. Therefore, only the Salsa20 stream cipher, and the Poly1305 message-
authentication code are being used for encryption and authentication.

Figure 5 still applies to this encryption method. The difference is that the shared secret is
predefined and does not need to be derivated.

3 Security Evaluation of WebRTC

Encryption in WebRTC is mandatory. For every instance of an RTCPeerConnection, WebRTC
creates a self-signed TLS certificate including a key pair for asymmetric encryption. Because
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the certificates are self-signed, no explicit chain of trust exists that can be verified. In conse-
quence, and much like the signalling channel, authentication needs to be performed by the
application.

3.1 Signalling

WebRTC requires that the developer implements a signalling channel. Although encryption for
WebRTC is mandatory, the SDPmessages that need to be transferred over the signalling chan-
nel are not encrypted. Without any further encryption mechanism, they can be manipulated
by intermediary nodes (e.g. at least the signalling server). Even worse, if no transport layer
security is being used for the channel, every intermediary node canmanipulate the signalling
data.

In some cases, being able to read or evenmanipulate the data on the signalling servermight be
a requirement but we cannot think of a good reason why this should be done. ICE passwords
and potentially ICE candidates could be read. Key fingerprints and ICE candidates could be
changed by malicious servers in between the peers. This would open up the possibility for
man-in-the-middle attacks. Confidentiality, integrity and authentication, if required, needs to
be implemented by the application developer. In the browser, this is not an easy problem to
solve because there is no built-in cryptography support in JavaScript and the specification of
the Web Cryptography API [22] is not done, yet.

3.2 Peer Connection Authentication

The SRTP keys of the peers are being exchanged in the DTLS-SRTP negotiation, using a Diffie-
Hellman based key exchange algorithm. The key fingerprint will be used to verify the public
key that has been received. If the fingerprint does not match, the session will be rejected.
Again, it is vital that the integrity of offer and answermessages is guaranteed. Otherwise, this
mechanism cannot ensure that only the peers who exchanged offer and answer establish a
peer connection.

WebRTC endpoints use SRTP for real-time and DTLS for arbitrary data. The keys required for
the SRTP connections are being exchanged by theDTLS-SRTP [15] technique on themedia chan-
nel. Therefore, it is independent from the signalling channel which protects the endpoints
against eavesdropping on a media session.

3.3 Replay Attacks

The SRTP protocol maintains a so called Replay Listwhich contains the indices of all packages
that have been received in a sliding window. The receiver checks the index of an incoming
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packet against its internal replay list. Packets with an index ahead or inside the window, but
not already received, will be accepted. [17]

DTLS uses the same approach for replay detection as SRTP but the support is optional. We do
not know whether or not WebRTC requires this feature.

3.4 DTLS Encryption

Because DTLS is based on TLS, it inherits nearly all of TLS’s mechanisms. Over the last few
years, several major attacks on TLS have been revealed [23] and we have to assume that there
are more to come. Additionally, the cryptography library OpenSSL has also had several major
vulnerabilities in the near past. This is relevant because a lot of WebRTC implementations
will utilise OpenSSL’s DTLS implementation. Fortunately, after the Heartbleed vulnerability
has been published, a lot of effort has been made to review and improve OpenSSL. Anyhow,
OpenSSL remains an extremely complex software library and we cannot rule out that there
are still some major vulnerabilities that have not been discovered, yet.

3.5 Conclusion

Apart from our concerns about DTLS, the architectural design of WebRTC provides good secu-
rity for the peer-to-peer connection in general. But the exposed signalling data poses a security
risk, not only for unexperienced application developers. An end-to-end encrypted solution to
solve this problem is not trivial.

4 SaltyRTC - Secure WebRTC based on NaCl

SaltyRTC is a software collection that has been written to set up and provide a secure WebRTC
data channel even when the underlying DTLS encryption of the peer connection or the TLS
encryption of the signalling implementation is completely broken. This ensures that we have
a countermeasure for every possible vulnerability of DTLS or TLS.

In addition, SaltyRTC provides authentication for WebRTC peers. Moreover, SaltyRTC does
not trust and does not need to trust the signalling server. Data exchanged on the signalling
channel can only be read by the peers. The server has no way to manipulate data undetected.
We consider this a major advantage over other signalling implementations.

All authentication is done by challenges for NaCl key pairs and a NaCl secret key that is used
once. Only 64 bytes need to be exchanged over a separate channel: The public NaCl key (32
bytes) and a secret key (32 bytes) of the peerwho initiates the connection. While the public key
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can be exchanged over an unprotected channel, the secret key must be exchanged over a se-
cure channel. The channel itself has to be provided by the developer. Moreover, the peersmay
store the public key of each others peer as a trusted key. In that case, further communication
can be established without the need of a secure channel.

The collection consists of two libraries, one written in Java for Android and the other written
in JavaScript for the browser, that provide the necessary functions to set up a peer-to-peer con-
nection based onWebRTC. Also included in the collection is a signalling server implementation
written in Python 3.

4.1 Terminology

4.1.1 WebRTC Key

A key pair that is generated by the WebRTC implementation of the browser. Neither do we
have influence on the generation process of this key pair, nor can we access or modify it.

4.1.2 Permanent Key

The permanent key is a NaCl key pair for public key authenticated encryption. Each peer
generates his own permanent key.

4.1.3 Authentication Token

An authentication token consists of a NaCl secret key that is valid for a single encrypted mes-
sage. The token has to be exchanged over a secure channel.

4.1.4 Trusted Key

A public permanent key can be stored as a trusted key. Further communication attempts be-
tween those two peers do not require another authentication token and therefore no secure
communication channel. Obviously, to make this work both peers have to store each others
public permanent keys as trusted keys.

4.1.5 Session Key

The session key is a NaCl key pair which is only valid for a single peer-to-peer session. Session
keys are being exchanged after the peers have authenticated each other.
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4.1.6 Shared Secret

The shared secret will be derived from the public NaCl key of one peer and the private NaCl
key of the other key. See the NaCl section for details. To understand the composition of the
nonce, it is vital to know that both peers use the same sequence of bytes to encrypt and decrypt
data.

4.1.7 Nonce

Nonces are sequences of 24 bytes that must only be used once per shared secret. A previously
generated Cookie occupies the first 16 bytes of outgoing nonces. The same applies to the re-
ceived cookie for incoming nonces. The last 4 bytes represent a Sequence Number to detect
replay attacks. Because session keys will be used for different channels, and therefore se-
quence numberswill be counted separately for these channels, there are 4 randombytes called
Channel Number in between the cookie and the sequence number. These random bytes are
generated once and are unique for each channel that has its own sequence number counter.

Figure 6: SaltyRTC Nonce Structure

Only the authentication token uses a random nonce (e.g. 24 cryptographically secure random
bytes) instead of the described format above. In this case, replay attacks can still be detected
because the authentication token is only valid for a single successful decryption attempt.

4.1.8 Cookie

The cookie is being used for two things at the same time. First of all, it resembles a challenge
that needs to be repeated by the other peer. The peer can thereby prove that he has the private
key for the public key he transmitted. Furthermore, the cookie occupies the first 16 bytes of
the 24 bytes long nonce. Each peer uses his own cookie for outgoing messages. To ensure that
nonces are unique per shared secret, the peers are required to choose different cookies.

4.1.9 Channel Number

This number is unique for each channel that may be used with the same cookie but with a
different sequence number counter. As part of the nonce, its only purpose is to ensure that no
nonce is being used more than once with the same shared secret.
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4.1.10 Sequence Number

The sequence number plays a vital role as part of the nonce. It is mainly used to detect replay
attacks. Because the sequence number will always be incremented with each packet sent on
its channel, it also ensures that no nonce is being used repeatedly.

4.1.11 Initiator

The initiator initiates the peer connection. In case the initiator has not stored a previously
generated private permanent key and a trusted key of the other peer, a new permanent key
will be generated alongside an authentication token.

4.1.12 Responder

The responder receives information from the initiator. This information could just be a
wakeup call in case the initiator is already trusted or contain the public permanent key of the
initiator including an authentication token.

4.1.13 Signalling Channel Path

As the signalling channel has been implemented using WebSocket, we can specify our own
paths to separate incoming connections. A path is a simple ASCII string and consists of the
hex value of the initiators public permanent key. Initiator and responder connect to the same
path.

4.2 Architecture

In figure 7, we have illustrated the architecture of SaltyRTC. Before SaltyRTC will be explained
in detail, we will provide a basic overview of each section from top to bottom:

We have used theWeb API to develop the browser version of SaltyRTC and the native Android
library (which is not visible in figure 1 but basically wraps the C++ API) to build the Android
version of SaltyRTC. While the APIs are not that far apart from each other, the languages, Java
and JavaScript, are not alike, so twomore or less similar library versions had to be developed.

SaltyRTC is divided into three major sections: The Signalling Channel, the Peer Connection
and theData Channel. All three sections require packet validation and a cryptography inter-
face to encrypt and decrypt messages. Additionally, we are able to separate SaltyRTC sessions
from each other and provide high-level events and states. The events and states of the three
major sections have been unified to simplify the usage of SaltyRTC. However, developers are
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Figure 7: SaltyRTC Architecture
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still able to access the low-level events and states of the signalling channel, the peer connection
and the data channel.

The Signalling Channel uses WebSocket and a custom binary signalling protocol to authenti-
cate the other peer. After the communication partner has been authenticated, the Peer Con-
nection section provides the requiredmetadata to setup a peer-to-peer connection. As soon as
the peer-to-peer connection has been established, the Data Channel can be used to exchange
arbitrary data.

4.3 Exchanging the Authentication Token and the Public Key

When two peers want to connect to each other for the first time, the initiator must generate an
authentication token. This token needs to be transmitted to the other peer alongside the public
permanent key of the initiator. In the section Authentication of the Peers, the authentication
token will be used by the responder.

It is vital to understand that SaltyRTC does not declare how the authentication token and the
public permanent key of the initiator need to be transmitted. However, we have minimised
the amount of data to 64 bytes which can easily be encoded into a QR-Code.

4.4 Signalling Channel

As mentioned before, WebRTC does not provide a signalling solution but leaves this task up
to the developer. SaltyRTC provides such a signalling channel implementation based on Web-
Socket with TLS encryption.

The signalling protocol has been designed in a way that the channel itself does not need to be
trusted. The encrypted data is simply relayed to the other peer and can only be read by either
of the peers.

4.4.1 Packet Structure

In the following, we will describe and visualise the structure of the payload of the WebSocket
packet:

1. A single byte that indicates the receiver or sender of the packet, depending on whether
the packet is being sent (to) or has been received (from). The receiver byte will be ex-
plained in the table below. This byte is not encrypted.
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Figure 8: Signalling Channel Packet Structure

2. A serialised JSON object or a NaCl Box containing a serialised JSON object. The nonce
of this box complies to the format described in the Nonce section. Which case applies
is known to all parties at any time because the plaintext serialised JSON object is only
needed during the handshake.

Receiver Value

from/to Server 0x00

from/to Initiator 0x01

from/to Responder #1 0x02

from/to Responder #2 0x03

… …

Table 3: Receiver Types and Values

With the receiver byte, the server and the peers can determine which key has to be used to
decrypt the NaCl box and how to validate the nonce. In addition, the server requires this
byte to determine whether the packet needs to be relayed to the other peer or is directed at
the server. Before the authentication of a specific client is complete, the only receiver the
client may use is Server. In addition, Responders are not allowed to communicate with other
Responders.

The receivers Server and Initiator always have the same value. Because there can be multi-
ple Responders connected to the same signalling channel at the same time, each successful
authentication of a responder towards the server requires an identifier. Therefore, the maxi-
mum amount of connected clients on a path is 255.
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4.4.2 Packet Types: Client-to-Server

This section describes the various packet types that can be exchanged between server and
client (e.g. the receiver byte is set to from/to Server). We will describe and provide an example
for each packet type. The packets are UTF-8 encoded JSON objects.

4.4.2.1 server-hello This is the first message that occurs on the signalling channel. The
server generates and sends his public key alongside a hex encoded cookie to the client.

Encryption: None (apart from the underlying TLS layer)

{

"type": "server-hello",

"key": "debc3a6c9a630f27eae6bc3fd962925bdeb63844c09103f609bf7082bc383610",

"m-cookie": "af354da383bba00507fa8f289a20308a"

}

4.4.2.2 client-hello In case that the client is the responder, the clientwill answer to a server-
hello with his hex encoded public permanent key. The initiator will not send this packet type
to the server. Thereby, the server can differentiate between initiator and responder.

Encryption: None (apart from the underlying TLS layer)

{

"type": "client-hello",

"key": "55e7dd57a01974ca31b6e588909b7b501cdc7694f21b930abb1600241b2ddb27"

}

4.4.2.3 client-auth Both initiator and responder send this packet type. It contains the re-
peated cookie (y-cookie) that the server sent along with the server-hello and a hex encoded
cookie the client generates (m-cookie).

Encryption: NaCl Box (Server’s Session Public Key, Client’s Permanent Private Key)

{

"type": "client-auth",

"y-cookie": "af354da383bba00507fa8f289a20308a",

"m-cookie": "18b96fd5a151eae23e8b5a1aed2fe30d"

}
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4.4.2.4 server-auth To complete the authentication process, the server repeats the cookie
that the client sent in the client-auth packet. The additional field responders contains a list of
hex encoded identities of responders that have authenticated themselves towards the server.
Both initiator and responder will receive this packet. But the responders field will only be
included in the packet that is intended for the initiator.

Encryption: NaCl Box (Server’s Session Private Key, Client’s Permanent Public Key)

{

"type": "server-auth",

"y-cookie": "18b96fd5a151eae23e8b5a1aed2fe30d",

"responders": [

"02",

"03"

]

}

4.4.2.5 new-responder When a new responder has completed the server’s authentication
process and an initiator is connected, the server will send this message to the initiator. It
contains the hex encoded identity (id) of the newly connected responder.

Encryption: NaCl Box (Server’s Session Private Key, Client’s Permanent Public Key)

{

"type": "new-responder",

"id": "04"

}

4.4.2.6 drop-responder After the initiator is authenticated towards the server, he may re-
quest that one or more responders shall be dropped from the server. The id field contains the
hex encoded identity of a responder.

Encryption: NaCl Box (Server’s Session Private Key, Client’s Permanent Public Key)

{

"type": "drop-responder",

"id": "02"

}
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4.4.2.7 send-error In case that the server could not relay a message from one peer to the
other peer, the server will send this message to the client who originally sent themessage. The
original message will be hex encoded and included in themessage field.

Encryption: NaCl Box (Server’s Session Private Key, Client’s Permanent Public Key)

{

"type": "send-error",

"message": "..."

}

4.4.3 Packet Types: Peer-to-Peer

This section describes the various packet types that can be exchanged between an initiator
and a responder (e.g. the receiver byte is set to from/to Initiator or from/to Responder #x). We
will provide and describe an example for each packet type. The packets are UTF-8 encoded
JSON objects.

Note: The packet payload cannot be decrypted by the server because different NaCl keys will
be used.

4.4.3.1 token The responder sends his hex encoded public permanent key to the initiator.
In case that both peers have stored each other’s permanent keys as trusted keys, this packet
will be skipped.

Encryption: NaCl Box (Authentication Token)

{

"type": "token",

"key": "55e7dd57a01974ca31b6e588909b7b501cdc7694f21b930abb1600241b2ddb27"

}

4.4.3.2 key The peer announces his hex encoded public session key accompanied by a hex
encoded random cookie. Both peers need to send this packet.

Encryption: NaCl Box (Sender’s Private Permanent Key, Receiver’s Public Permanent Key)

{

"type": "key",

"key": "bbbf470d283a9a4a0828e3fb86340fcbd19efe75f63a2e51ad0b16d20c3a0c02",

"m-cookie": "957c92f0feb9bae1b37cb7e0d9989073"

}
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4.4.3.3 auth The peer who received a previously sent key packet, repeats the received
cookie. Both peers need to send this packet.

Encryption: NaCl Box (Sender’s Private Session Key, Receiver’s Public Session Key)

{

"type": "auth",

"y-cookie": "957c92f0feb9bae1b37cb7e0d9989073",

}

4.4.3.4 offer The initiator sends theWebRTC offer SDP message in the data field along with
a session. This session is a random 32 printable character string that needs to be provided in
further messages from both peers. With this field, the WebRTC session is identifiable.

Encryption: NaCl Box (Sender’s Private Session Key, Receiver’s Public Session Key)

{

"type": "offer",

"session": "QFyatn4rwnJSPiO0ru8JTAo7nM2sy0Ws",

"data": "..."

}

4.4.3.5 answer As soon as the responder received and processed an offer packet, he sends
the WebRTC answer SDP message in the data field to the initiator.

Encryption: NaCl Box (Sender’s Private Session Key, Receiver’s Public Session Key)

{

"type": "answer",

"session": "QFyatn4rwnJSPiO0ru8JTAo7nM2sy0Ws",

"data": "..."

}

4.4.3.6 candidate Both peers may send WebRTC ICE candidates at any time after offer and
answer messages have been exchanged. The candidates will be provided in the data field.

Encryption: NaCl Box (Sender’s Private Session Key, Receiver’s Public Session Key)

{

"type": "candidate",

"session": "QFyatn4rwnJSPiO0ru8JTAo7nM2sy0Ws",

"data": "..."

}
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4.4.3.7 restart Initiator and responder may request that a WebRTC session shall be
restarted. This packet type can be used after the session keys have been exchanged and the
cookies have been repeated.

Encryption: NaCl Box (Sender’s Private Session Key, Receiver’s Public Session Key)

{

"type": "restart"

}

4.4.4 Connection Build-Up

Both initiator and responder connect to the same signalling channel path which consists of
the initiator’s hex encoded public permanent key. Therefore, the risk of a path collision is as
negligible as the risk of generating the same private key twice.

Because we use WebSocket with TLS, the connection build-up includes a TCP, TLS and a Web-
Socket handshake.

4.4.5 Authentication towards the Server

When a peer is connected to the signalling server, he needs to authenticate himself towards
the server. The procedure differs for initiator and responder as can be seen in figure 9.

The grey dotted arrow in figure 9 indicates that the TCP, TLS and the WebSocket handshake
need to be done beforehand, including transmitting the signalling channel path.

A green arrow indicates that the message payloads are NaCl public-key encrypted between
server and initiator/responder. Black arrows mark unencrypted messages (although this is a
bit misleading because these messages are still TLS encrypted).

4.4.5.1 Initiator

1. The server generates and sends his public key alongside a cookie to the initiator.
2. Because both public keys have been exchanged, the initiator can now repeat the server’s

cookie and send his own cookie in an encrypted message.
3. To complete the authentication process, the server repeats the initiator’s cookie.

The initiator does not need to send his public permanent key because the key has already been
provided as theWebSocket path. Therefore, the initiator can directly send NaCl public-key en-
crypted payloads while the responder still needs to send his public permanent key. As the
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Figure 9: SaltyRTC Signalling Channel Server Authentication

initiator has the privilege to disconnect responders from the signalling channel, this authen-
tication procedure proofs towards the server that the initiator has the private key to the path
he connected to.

4.4.5.2 Responder

1. The server generates and sends his public key alongside a cookie to the responder.
2. To be able to send encrypted messages, the responder sends his permanent public key

to the server.
3. Now, that the responder has sent his public key to the server, he can repeat the server’s

cookie and send his own cookie in an encrypted message.
4. To complete the authentication process, the server repeats the responder’s cookie.

4.4.6 Authentication of the Peers

As soon as initiator and responder have authenticated themselves towards the server on the
same path, the connections are linked together. Both peers may send payloads to each other
and the signalling server simply relays them to the other peer.

Now, the peers need to authenticate themselves towards each other and announce their ses-
sion keys. This procedure can be seen in figure 10.

The orange arrow in the figure expresses a payload that is encrypted by the authentication
token. A green arrow indicates that the message payloads are encrypted by the peers perma-
nent keys. A blue arrow marks message payloads that have been encrypted with the peers
session keys.
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Figure 10: SaltyRTC Signalling Channel Peer Authentication

1. The responder starts by sending his public permanent key encrypted by the authentica-
tion token to the initiator. In case that both peers have stored each other’s permanent
keys as trusted keys, this step will be skipped and no authentication token is required.

2. A session key will be generated and sent by the initiator, accompanied by a cookie.
3. Just like the initiator, the responder will also send a generated session key and a cookie.
4. To mitigate replay attacks, the initiator now repeats the responder’s cookie.
5. And the responder repeats the initiator’s cookie.
6. Both parties may now send arbitrary data to each other, encrypted by the session keys.

Not shown in figure 10 is the communication between initiator and server. The initiator may
request that formerly connected responders shall be disconnected from the signalling channel
path when a new responder has authenticated himself.

4.4.7 Exchanging Offer, Answer and Candidates

After both authentication procedures are complete, the peers are free to send arbitrary data
to each other over the signalling channel. The initiator will start sending an offer message
and the responder will answer with an answer message. Finally, the ICE candidates will be
exchanged and the peer-to-peer connection can be established. All these messages have been
described in the WebRTC section and are encrypted with the established session keys.
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4.5 Data Channel

When the WebRTC peer connection has been established, initiator or responder may create
WebRTC data channels. To use SaltyRTC’s encryption mechanisms, the RTCDataChannel ob-
ject can be supplied to a function of the library which wraps the RTCDataChannel object. Both
peers have to wrap their RTCDataChannel objects. The result is a RTCDataChannel-like object
that can be used to send arbitrary data where encrypting and fragmenting will happen auto-
matically. For encryption, the previously established session keys will be used.

4.5.1 Packet Structure

In the following, wewill describe and visualise the structure of the payload of the data channel
packet:

Figure 11: Data Channel Packet Structure

1. A single byte that indicates whether there are more fragments (any value but 0x00) or
the message is complete. This byte is not encrypted.

2. A part of or a whole NaCl Box containing arbitrary data. The nonce of this box complies
to the format described in the Nonce section. Fragmented boxes will be reassembled
when they are complete.

Note: Currently, theWebRTC library from Google only supports sending messages up to 16 KB.
[24] To avoid data loss, messages greater than 16 KB have to be fragmented. Once this issue
is resolved, the fragment byte will be removed. A negative side effect of this temporary and
very simple fragmenting solution is that, until the fragment byte is removed, SaltyRTC only
supports ordered and reliable data channels.
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4.6 Peer-to-Peer Connection Build-Up

As soon as the RTCPeerConnection is being created, the initiator acquires his permanent key.
Depending on whether the responder is already trusted or not, the public permanent key and
an authentication token may need to be transmitted to the responder. The initiator connects
to the signalling channel path and authenticates himself towards the signalling server.

Once the responder has received the information, he also connects to the same signalling chan-
nel path. In case the responder has received an authentication token, he will send his public
permanent key encrypted by the authentication token. Now that the responder is authenti-
cated, both peers generate and send each other their session keys along with a random cookie.
Each peer repeats the received cookie encrypted by the session keys. As soon as the peers
have validated that the repeated cookie matches the sent cookie, they are ready to transmit
arbitrary data over the signalling channel.

This is the time where all signalling data from WebRTC, such as offer, answer and candidates,
will be transmitted over the signalling channel.

Once the candidate gathering is complete, the peer connection will be established. The de-
veloper may now create WebRTC data channels and use SaltyRTC to send data directly to the
other peer encrypted by the session key.

4.7 Security Analysis

4.7.1 Preconditions

Before we can talk about various attack scenarios, we need to make a few assumptions for
both communication partners:

• The operating system of the device and the running applications are not compromised.
• The browser, e.g. the JavaScript sandbox is not compromised.
• The Android application is not compromised.

4.7.2 Attack Vectors

4.7.2.1 Authentication Token Although SaltyRTC does not declare how an authentication
token should be exchanged, we can assume that using QR codes will be a commonly used and
convenient way of exchanging the token. Obviously, exchanging this token in a public place is
a bad idea and it is probably impossible to eliminate the possibility of eavesdropping. Even at
home, wiretapping is still possible if the rooms of the residence have been compromised, for
example by an intelligence agency. Nonetheless, the frequency of such attacks can be reduced
significantly by using the trusted key feature of SaltyRTC.
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4.7.2.2 Signalling Channel In this scenario, we assume that the signalling server has been
compromised. But because SaltyRTC does not trust the signalling server in the first place, the
only attack that can be made is a denial of service. Still, this is a relevant attack because no
WebRTC peer connection can be established.

4.7.3 Protection Mechanisms

The following section summarises the most vital security mechanisms of SaltyRTC and which
attacks they prevent.

4.7.3.1 Authentication When the authentication token has been exchanged in a secure
manner, both peers can assure authentication of each other.

The initiator either authenticates the responder by receiving the responder’s public perma-
nent key via the authentication token, or he already knows the public permanent key of the
responder. For both cases, only the initiator and the responder have the shared secret that
can decrypt messages.

The other peer, the responder, also knows the public permanent key of the initiator before he
connects to the signalling server. Again, only the initiator and the responder have the shared
secret to decrypt messages.

To summarise, only initiator and responder are able to communicate with each other. An
attacker would not be able to derive the necessary shared secret from the messages that are
being exchanged on the signalling and the data channel.

4.7.3.2 Protection against Denial of Service on the Signalling Channel Because of the
receiver byte (see Packet Structure for details), the amount of responders connected to a sig-
nalling channel path is limited to 254. If an attacker knows the public permanent key of the
initiator, he can authenticate 254 responders towards the signalling server and hinder further
responders from authenticating on the same signalling path who want to communicate with
the initiator.

However, the server will announce all authenticated responders at the beginning and will
continue to announce each newly authenticated responder to the initiator. The initiator has
the privilege to request that a responder shall be dropped from the server. A timeout is being
used for each responder that has not authenticated himself towards the initiator. When the
timeout expires, the initiator will request that the responder shall be dropped.

4.7.3.3 Protection against Replay Attacks The Nonce consists of a random 16 byte cookie
a 4 byte channel number and a 4 byte sequence number. A peer who receives an encrypted
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message knows the cookie of the sender because the sender has announced the cookie he will
use during the authentication process. Channel number and sequence number can only be
incremented. Therefore, a repeated message can be detected easily by verifying the cookie
and the sequence number for the channel.

For the data channel: The attacker would have to break the replay detection or the encryption
of DTLS first before this mechanism even takes place.

4.7.3.4 Uniqueness of Nonces Because we use NaCl for encryption, a Nonce is required to
be unique per shared secret. Part of the nonce is a 16 byte cookie that must be a cryptograph-
ically secure sequence of random bytes. The chance of generating a cookie twice is negligible
and the attacker would have to do the whole handshake process of the signalling server and
wait until the victim sends the first message that includes a newly generated cookie. However,
it is also possible to reduce the attacker’s chance of success significantly by enforcing a timeout
after each failed authentication attempt.

4.7.3.5 Maintaining Ciphertext Integrity The Message Authentication Code (MAC) of the
NaCl Box ensures that messages are authenticated.

4.7.3.6 Forward Secrecy In case that the attacker managed to break the DTLS encryption
of the WebRTC peer connection and obtain the private permanent key of one of the peers, the
messages of a session’s data channel still cannot be decrypted. The attackerwould also need to
obtain the private session key from one of the peers. However, the session keys are only valid
for a limited period of time and will not be stored permanently by either of the peers. This
mechanism ensures that compromised private permanent keys do not compromise encrypted
data of previous sessions.

4.8 Possible Improvements

In this section, we will enumerate a list of several improvements that could be applied to the
SaltyRTC software collection.

4.8.1 Unordered and Partially Reliable Delivery Support

Due to the fact that the WebRTC library from Google currently does not reliably transfer mes-
sages greater than 16 KB [24], we had to implement manual message fragmentation. The first
byte of each message indicates whether there are more upcoming fragments or not. There-
fore, the underlying data channel must be reliable and ordered. Because this is a temporary
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problem that will likely be resolved by Google in the near future, no big effort has been made
to work around it.

A slidingwindow approach for the sequence number validation could be usedwhen fragment-
ing is not needed anymore.

4.8.2 MessagePack instead of JSON

The usage of MessagePack instead of JSON objects would reduce the packet size of many mes-
sages that include binary data. JSON requires that binary data is encoded into printable char-
acters. MessagePack allows for binary data to be packed directly. However, there seems to be
no officially developed JavaScript library which is the main reason why it has not been used
for the protocol design at the first place.

4.8.3 Push Message Extension

After an authentication token has been set on the server, the server may send a push message
to the other peer. This tells the other peer to connect to the signalling channel in case the
received key in the push message is a trusted key.

4.8.4 Audio and Video

Currently, SaltyRTC does not handle audio or video. Simply, because we did not need it, yet.
Additionally, we do not knowwhether the media API of HTML5 supports modifying the media
streamdata andwhether or not that would break the various techniques of the codecs, such as
echo cancellation for voice data. On the sender’s side, we need to be able to modify the stream
data after it has been processed by the codecs. And on the receiver’s side, the same applies to
the stream data before it has been processed by the codecs. Both pre- and post-processing are
required.

However, you can still use SaltyRTC to set up the peer connection in a securemanner and then
use the WebRTC API for audio and video.

5 ThreemaWeb Client Prototype

Threema is a mobile messenger application that provides end-to-end encryption. [25] It has
been developed by the Threema GmbH which is based in Pfäffikon, Switzerland.
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5.1 Introduction

Because of the end-to-end encryption, the Threema server only stores messages momentarily
until they have been transferred to the receiver. Therefore, the chat history, contacts, etc.
are only stored on a single device; Threema has no multi-device support. A user who owns
multiple devices and wants to see her/his chat history on both of them, faces a problemwhich
has not been resolved until now.

5.2 Analysis

Using the same Threema ID on multiple devices does not work because the server only allows
one connection from the same Threema ID at the same time. Moreover, messages from con-
tacts would only be transferred to one of the devices but not both. Clearly, this is not what we
want.

To provide multi-device support, we have to provide a way to retrieve data from the device
which has the Threema ID and its private key. From now on, we will call this device the
Threema node or just node.

We estimate that most Threema users carry the node with themmost of the time. But to write
long messages, a notebook is much more convenient. In those cases, the users are probably
even connected to the same wireless access point on both devices. Thus, transferring the data
from the node to the notebook over the Internet would be pointless. A direct connection over
the local area network is preferable.

Other Threema users may have a device that they leave at home all or most of the time. If this
device is the Threema node, they must also be able to access the device from other locations
over the Internet.

Most importantly, the client needs to be authenticated towards the node and the data needs to
be transferred securely. Only the node and the connecting client shall be able to decrypt the
data they exchange.

What we want is a direct and secure way to communicate with the node from other devices
over the shortest possible route.

5.3 Solution

SaltyRTC is the answer. It does exactly what we require: A direct and secure way to communi-
cate with the node over the shortest possible route. Clients, who want to connect to the node,
have to be authenticated explicitly by the node by using QR codes that resembles the authen-
tication token. A node can trust the permanent key of a client and further communication
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attempts do not require another authentication token. When a client is trusted by the node, a
simple push message sent to the node suffices and the node can start connecting to the client.

We have developed a protocol on top of SaltyRTC’s data channel which provides access to
contacts, messages and various other data. Of course, it is also possible to send messages to
Threema contacts on the client who connects to the node. The idea is that the client is able to
do everything the Threema application can do as well.

5.4 Prototype

A prototype has been developed for the browser which uses SaltyRTC to connect to the
Threema node. We are able to retrieve contacts, groups and their avatars, display conver-
sations and their chat history, receive and handle new messages, contacts, etc. and, most
importantly, are able to send Threema messages from the client who connects to the node.

Both devices do not have to be on the same network. But because ICE tries to use the best
route, the devices will most likely gain a latency and throughput benefit if they are on the
same network.

For the prototype, we have not used the permanent key feature. A new permanent key pair
will be generated for each session. The browser generates and shows the authentication token
in form of a QR code which the Android app has to scan for every new session. This could be
changed over to a push notification in the future (see the Push Message Extension section for
details).

5.4.1 Communication

The browser takes the role of the SaltyRTC initiator and the Threema Android app the role of
the responder.

1. First of all, the browser creates a SaltyRTC instance which automatically generates a
new permanent key pair. The browser requests an authentication token and displays
the hex encoded token in a QR code.

2. In the app, the user has to start the Web Client. A SaltyRTC instance starts and a new
permanent key pair will be generated. The app will show a camera preview and the
user has to scan the QR code with the smartphone camera.

3. Both browser and app connect to the same signalling server and use the permanent
public key of the browser as the path value.

4. The app uses the secret key provided in the authentication token to authenticate itself
towards the browser.
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Figure 12: Threema Web Client Communication
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5. To establish the peer connection, the browser sends the offer message and the app re-
sponds with an answermessage. Afterwards, ICE candidates will be exchanged.

6. The peer-to-peer connection is being established and the browser creates a data channel
with the label 3ema. The app receives information about the newly created data channel
and waits for incoming messages.

7. Now, the browser requests various initial data, e.g. the contact list, a list of conversa-
tions, the avatar images, etc. and the app sends the requested data back to the browser.
The browserwill receive updates to requested data and can request additional data from
the app.

5.4.2 Screenshot

In figure 13 we can see the contact list on the left side and a conversation on the right side.

Figure 13: Threema Web Client Prototype
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5.5 Conclusion

The prototype shows a typical use case for SaltyRTC. It also proves that multi-device support
for Threema is tricky but definitely possible. The only constraint left is that the node device
has to be online and reachable over the Internet.
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